Classification-based strategies for combining multiple 5-w question answering systems
نویسندگان
چکیده
We describe and analyze inference strategies for combining outputs from multiple question answering systems each of which was developed independently. Specifically, we address the DARPA-funded GALE information distillation Year 3 task of finding answers to the 5-Wh questions (who, what, when, where, and why) for each given sentence. The approach we take revolves around determining the best system using discriminative learning. In particular, we train support vector machines with a set of novel features that encode systems’ capabilities of returning as many correct answers as possible. We analyze two combination strategies: one combines multiple systems at the granularity of sentences, and the other at the granularity of individual fields. Our experimental results indicate that the proposed features and combination strategies were able to improve the overall performance by 22% to 36% relative to a random selection, 16% to 35% relative to a majority voting scheme, and 15% to 23% relative to the best individual system.
منابع مشابه
دستهبندی پرسشها با استفاده از ترکیب دستهبندها
Question answering systems are produced and developed to provide exact answers to the question posted in natural language. One of the most important parts of question answering systems is question classification. The purpose of question classification is predicting the kind of answer needed for the question in natural language. The literature works can be categorized as rule-based and learning...
متن کاملCluster-Based Selection of Statistical Answering Strategies
Question answering (QA) is a highly complex task that brings together classification, clustering, retrieval, and extraction. Question answering systems include various statistical and rule-based components that combine and form multiple strategies for finding answers. However, in real-life scenarios efficiency constraints make it infeasible to simultaneously use all available strategies in a QA...
متن کاملImproving Question Answering for Reading Comprehension Tests by Combining Multiple Systems
Most work on reading comprehension question answering systems has focused on improving performance by adding complex natural language processing (NLP) components to such systems rather than by combining the output of multiple systems. Our paper empirically evaluates whether combining the outputs of seven such systems submitted as the final projects for a graduate level class can improve over th...
متن کاملJAIST: Combining multiple features for Answer Selection in Community Question Answering
In this paper, we describe our system for SemEval-2015 Task 3: Answer Selection in Community Question Answering. In this task, the systems are required to identify the good or potentially good answers from the answer thread in Community Question Answering collections. Our system combines 16 features belong to 5 groups to predict answer quality. Our final model achieves the best result in subtas...
متن کاملStrategies For Advanced Question Answering
Progress in Question Answering can be achieved by (1) combining multiple strategies that optimally resolve different question classes of various degrees of complexity; (2) enhancing the precision of question interpretation and answer extraction; and (3) question decomposition and answer fusion. In this paper we also present the impact of modeling the user background on Q/A and discuss the pragm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009